Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Immunother Cancer ; 10(4)2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35418483

RESUMO

BACKGROUND: Cancer stem cells (CSC) define a population of rare malignant cells endowed with 'stemness' properties, such as self-renewing, multipotency and tumorigenicity. They are responsible for tumor initiation and progression, and could be associated with resistance to immunotherapies by negatively regulating antitumor immune response and acquiring molecular features enabling escape from CD8 T-cell immunity. However, the immunological hallmarks of human lung CSC and their potential interactions with resident memory T (TRM) cells within the tumor microenvironment have not been investigated. METHODS: We generated a non-small cell lung cancer model, including CSC line and clones, and autologous CD8+CD103+ TRM and CD8+CD103- non-TRM clones, to dissect out immune properties of CSC and their susceptibility to specific T-cell-mediated cytotoxic activity. RESULTS: Unlike their parental tumor cells, lung CSC are characterized by the initiation of an epithelial-to-mesenchymal transition program defined by upregulation of the SNAIL1 transcription factor and downregulation of phosphorylated-GSK-3ß and cell surface E-cadherin. Acquisition of a CSC profile results in partial resistance to TRM-cell-mediated cytotoxicity, which correlates with decreased surface expression of the CD103 ligand E-cadherin and human leukocyte antigen-A2-neoepitope complexes. On the other hand, CSC gained expression of intercellular adhesion molecule (ICAM)-1 and thereby sensitivity to leukocyte function-associated antigen (LFA)-1-dependent non-TRM-cell-mediated killing. Cytotoxicity is inhibited by anti-ICAM-1 and anti-major histocompatibility complex class I neutralizing antibodies further emphasizing the role of LFA-1/ICAM-1 interaction in T-cell receptor-dependent lytic function. CONCLUSION: Our data support the rational design of immunotherapeutic strategies targeting CSC to optimize their responsiveness to local CD8+CD103+ TRM cells for more efficient anticancer treatments.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Linfócitos T CD8-Positivos , Caderinas/metabolismo , Glicogênio Sintase Quinase 3 beta/metabolismo , Humanos , Memória Imunológica , Pulmão , Linfócitos do Interstício Tumoral , Células-Tronco Neoplásicas , Microambiente Tumoral
2.
PLoS One ; 15(5): e0232418, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32421690

RESUMO

Improving the digestive efficiency of broiler chickens (Gallus gallus) could reduce organic waste, increase the use of alternative feed not used for human consumption and reduce the impact of feed in production costs. By selecting chicken lines divergently for their digestive efficiency, we showed previously that digestive efficiency is under genetic control and that the two resulting divergent lines, D+ (high digestive efficiency or "digestibility +") and D- (low digestive efficiency or "digestibility -"), also differ for the abundance of specific bacteria in their caeca. Here we perform a more extensive census of the bacteria present in the digestive microbiota of 60 chickens selected for their low apparent metabolizable energy corrected for nitrogen balance (AMEn-) or high (AMEn+) digestive efficiency in a [D+ x D-] F8 progeny of 200 individuals. We sequenced the 16S rRNA genes of the ileal, jejunal and caecal microbiotas, and compared the compositions and predicted functions of microbiotas from the different intestinal segments for 20 AMEn+ and 19 AMEn- birds. The intestinal segment of origin was the main factor structuring the samples. The caecal microbiota was the most impacted by the differences in digestive efficiency, with 41 bacterial species with abundances differing between highly and poorly efficient birds. Furthermore, we predicted that the caecal microbiota of efficient birds might be enriched in genes contributing to the degradation of short chain fatty acids (SCFA) from non-starch polysaccharides. These results confirm the impact of the genetic selection led on digestibility on the caecal microbiota taxonomic composition. They open the way toward the identification of specific, causal genes of the host controlling variations in the abundances of bacterial taxons.


Assuntos
Galinhas/microbiologia , Microbioma Gastrointestinal/genética , Ração Animal , Fenômenos Fisiológicos da Nutrição Animal , Animais , Biodiversidade , Galinhas/genética , Galinhas/crescimento & desenvolvimento , Digestão/genética , Digestão/fisiologia , Feminino , Microbioma Gastrointestinal/fisiologia , Interações entre Hospedeiro e Microrganismos/genética , Interações entre Hospedeiro e Microrganismos/fisiologia , Intestinos/anatomia & histologia , Intestinos/microbiologia , Intestinos/fisiologia , Masculino , Filogenia , RNA Ribossômico 16S/genética , Seleção Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA